以人为本 服务至上 科学管理 勤政高效

青藏所王磊研究员应邀牵头组织《第三极地区气候变化及其相关冰冻圈和水圈变化》专刊

  

  第三极地区(Third Pole, TP)是以青藏高原为核心的亚洲高海拔地区。TP分布着约10万平方公里冰川,这是在南北极以外的地球最大冰川群。TP是亚洲众多大江大河的发源地(如恒河、雅鲁藏布江、印度河、长江、黄河、塔里木河、湄公河、萨尔温江、阿姆河和锡尔河等),为下游数百万居民提供了宝贵的水资源。TP海拔高、覆盖着大面积的积雪、冰川、冻土和湖泊,对区域气候有深远的影响。自上世纪八十年代以来,TP变得更暖更湿,表现为气温显著上升,降水的时空变异性加剧;过去半个世纪TP的升温速率约为全球平均值的两倍,区域变暖变湿的气候与冰川退缩、湖泊扩张、冻土活动层增厚等现象密切相关。 

  Frontier in Earth Science编辑部邀请,中科院青藏高原所王磊研究员牵头,联合来自中科院南京地理与湖泊所、德国Potsdam Institute for Climate Impact Research (PIK)、日本International Centre for Water Hazard and Risk Management (ICHARM)以及青藏高原所的相关学者,组织了以《第三极地区气候变化及其相关的冰冻圈和水圈变化》(Climatic and Associated Cryospheric and Hydrospheric Changes on the Third Pole)为主题的专刊,旨在推动和促进针对TP气候变化及其对冰冻圈和水圈相关影响的专题研究。该专刊基本涵盖过去几十年TP气温、降水、积雪、冰川、冻土、湖泊和河流径流的变化,及其与气候变化之间的关联。这些研究成果将有助于提升对TP冰冻圈-水圈-大气圈之间相互作用的理解。 

  该期研究专刊共包含9篇论文,其中3篇是关于冰冻圈水文学的综述文章,综合集成实地观测、卫星遥感及过程模型,深入讨论了青藏高原冰冻圈水文方向的最新进展;其他研究论文则分别阐述了青藏高原的湖泊效应降水、巴伦支海海冰与青藏高原中西部地区雪深的遥相关、喜马拉雅地区的冰川消融、珠穆朗玛峰源头的水质化学、高山区积雪变化趋势等。跨学科的第三极专刊涵盖了气候、水文、冰冻圈、地质化学和遥感等多个学科内容,提高了对TP地区多圈层过程及其相互作用的认识和理解。 

  截止到202123日,《Climatic and Associated Cryospheric and Hydrospheric Changes on the Third Pole》研究专刊的9篇论文都已正式在《Frontier in Earth Science》发表。感兴趣的读者可通过扫描二维码或点击链接,获取该研究专刊的全部论文。 

    

  文章链接

  专刊论文列表: 

  (1)  Wang L, Song C, Conradt T, Rasmy M and Li X (2021) Editorial: Climatic and Associated Cryospheric and Hydrospheric Changes on the Third Pole. Front. Earth Sci. 8:638371. doi: 10.3389/feart.2020.638371 

  (2)  Dai Y, Yao T, Wang L, Li X and Zhang X (2020) Contrasting Roles of a Large Alpine Lake on Tibetan Plateau in Shaping Regional Precipitation During Summer and Autumn. Front. Earth Sci. 8:358. doi: 10.3389/feart.2020.00358 

  (3)  Wood LR, Neumann K, Nicholson KN, Bird BW, Dowling CB and Sharma S (2020) Melting Himalayan Glaciers Threaten Domestic Water Resources in the Mount Everest Region, Nepal. Front. Earth Sci. 8:128. doi: 10.3389/feart.2020.00128 

  (4)  Chevallier P, Seidel J-L, Taupin J-D and Puschiasis O (2020) Headwater Flow Geochemistry of Mount Everest (Upper Dudh Koshi River, Nepal). Front. Earth Sci. 8:351. doi: 10.3389/feart.2020.00351 

  (5)  Chen Y, Duan A and Li D (2020) Atmospheric Bridge Connecting the Barents Sea Ice and Snow Depth in the Mid-West Tibetan Plateau. Front. Earth Sci. 8:265. doi: 10.3389/feart.2020.00265 

  (6)  Smith T and Bookhagen B (2020) Assessing Multi-Temporal Snow-Volume Trends in High Mountain Asia From 1987 to 2016 Using High-Resolution Passive Microwave Data. Front. Earth Sci. 8:559175. doi: 10.3389/feart.2020.559175 

  (7)  Jiang H, Zheng G, Yi Y, Chen D, Zhang W, Yang K and Miller CE (2020) Progress and Challenges in Studying Regional Permafrost in the Tibetan Plateau Using Satellite Remote Sensing and Models. Front. Earth Sci. 8:560403. doi: 10.3389/feart.2020.560403 

  (8)  Ding Y, Zhang S, Chen R, Han T, Han H, Wu J, Li X, Zhao Q, Shangguan D, Yang Y, Liu J, Wang S, Qin J and Chang Y (2020) Hydrological Basis and Discipline System of Cryohydrology: From a Perspective of Cryospheric Science. Front. Earth Sci. 8:574707. doi: 10.3389/feart.2020.574707 

  (9)  Gao H, Wang J, Yang Y, Pan X, Ding Y and Duan Z (2021) Permafrost Hydrology of the Qinghai-Tibet Plateau: A Review of Processes and Modeling. Front. Earth Sci. 8:576838. doi: 10.3389/feart.2020.576838 

分享到 :